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Abstract—Residue Number System (RNS) has recently at-
tracted interest for the hardware implementation of inference
in machine-learning systems as it provides promising trade-offs
in the area, time, and power dissipation space. In this paper we
introduce a technique that utilizes regularization during train-
ing, and increases the percentage of residues which are zero,
when the parameters of an artificial neural network (ANN)
are expressed in an RNS. The proposed technique can also be
used as a post-processing stage, allowing the optimization of
pre-trained models for RNS implementation. By increasing the
number of residues being zero, i.e., residue-level sparsity, the
proposed technique facilitates new hardware architectures for
RNS-based inference, allowing new trade-offs and improving
performance over prior art without practically compromising
accuracy. The introduced method increases residue sparsity by
a factor of 4× to 6× in certain cases.

1. Introduction
Artificial intelligence (AI) and machine-learning (ML) ap-
plications proliferate in diverse fields of human activity
and have already demonstrated extraordinary achievements.
AI/ML solutions require substantial computational effort for
both inference and training as well as large memory cost for
model parameter storage. These requirements are translated
to excessive needs for energy, hardware complexity and
computational time. Dedicated hardware accelerators target
to efficiently provide the required computational power and
storage, by exploiting area, time, and energy trade-offs.

Recently, several authors have introduced RNS-based
hardware accelerators for ML applications. Due to its at-
tractive arithmetic properties, mainly its advantage in the
implementation of multiply-accumulate (MAC) operations,
RNS has been utilized in the design of deep neural network
(DNN) accelerators, where MACs are dominant. A common
approach in RNS-based DNN implementations is to perform
all MAC operations of a single convolutional or dense layer
in the RNS representation and then use a converter, to obtain
a partial result in normal binary representation [1], [2],
[3]. With this intermediate result, the non-linear activation
functions (ReLU, tanh, softmax) can be computed and the
results can be converted back to RNS format to be fed to
the next layer. Methods that implement activation functions
in the RNS domain have also been proposed [4]. While
these methods manage to offer performance gains in the
implementation of a single convolutional layer, they result

in a significant amount of additional hardware to perform
the conversions. More recently, end-to-end RNS architec-
tures have been developed that mitigate this overhead and
perform all computations in the RNS domain [5], with up
to 61% reduction in energy consumption when compared
to conventional positional binary systems. RNS has been
used in hardware accelerators for Long Short Time Memory
(LSTM) [4], where RNS-conscious approximations are also
introduced. Furthermore, hardware optimizations enabled by
the use of RNS, which reduce the number of multiplications
required in a CNN, are introduced in [6]. Optimization
from a different perspective is sought by regularization-
based techniques that have been exploited for introducing
structure to models as well as for the quantization of pa-
rameters [7] [8]; however, to our knowledge, they have not
yet been applied to optimize model parameters for RNS-
based hardware implementation.

In this paper we introduce a technique that imposes
certain properties on the parameters of a model, in order
to achieve desirable hardware implementation characteris-
tics, such as reduced energy, increased performance, lower
complexity without compromising accuracy. The proposed
technique, departing from prior RNS-related literature on
ML hardware accelerators, induces properties in the weights
that render their processing amenable for RNS implementa-
tion. Specifically, it relies on an introduced regularization of
the loss function during training, here shown to increase the
number of neural-network parameters that are multiples of
the elements of the RNS base, thus increasing the number
of zeros in the RNS channels; we refer to the percentage of
zeros in an RNS channel, as residue sparsity. The proposed
technique can be applied to pre-trained models as well, as a
post-processing step. The introduced method is here shown
to increase residue sparsity by a factor of 4× to 6× in certain
cases. This is translated to some energy savings in RNS-
based hardware accelerators. No practical degradation of
accuracy occurs. The choice of the RNS base is also found
to be important in the context of the proposed method.

The remainder of the paper is organized as follows:
Section 2 revisits the basics of RNS. Section 3 intro-
duces the proposed training method that imposes zero-value
residues in the weights. Section 4 discusses the impact of
the proposed induced residue-level sparsity on architectures
for hardware accelerators, both related to processing and
storage. Finally conclusions are discussed in Section 5.



2. RNS basics
An RNS maps an integer x to a tuple X of N residues

x → X = (x1, x2, . . . , xN ), (1)
where xi = x mod mi and mi, i = 1, 2, . . . , N , form a set
called base B,

B = {m1,m2, . . . ,mN} . (2)
Moduli mi of B are relatively co-prime; i.e.,

gcd
i̸=j

(mi,mj) = 1 (3)

for all i, j, 1 ≤ i, j ≤ N [9]. The dynamic range of the
representation is determined by B, as

M =

N∏
i=1

mi. (4)

Let ◦ denote the operation of addition or multiplication
among two RNS tuples X and Y . RNS is of interest because
the operations of addition and multiplication of two integers
x and y, mapped onto X and Y , can be performed as

Z = X ◦ Y, (5)
where ◦ is implemented point-wise, as

zi = (xi ◦ yi) mod mi, (6)
in a carry-free manner. The integer result z can be obtained
from its image Z by means of the Chinese Remainder
Theorem (CRT) [9]

Z
CRT−−→ z. (7)

By appropriately selecting the elements of B, benefits are
expected for hardware systems that perform a substantial
amount of multiplications and additions due to the paral-
lelism imposed by (6) and the short word lengths involved
in the residue channel processing.

3. Proposed RNS-conscious regularization
Assume a subset Bweight ⊂ B of the base B that suffices to
provide the dynamic range required for the representation
of neural-network weights. The dynamic range provided by
Bweight for the representation of the weights w, is

Mweight =
∏

∀m∈Bweight

m. (8)

Commonly, training in ML systems uses back propa-
gation to derive model parameters w that minimize a loss
function [10],

Eloss = E(w; I,O), (9)
where I are training inputs and O is an expression of the
expected output. Regularization is a technique that can be
used to impose additional properties on the model param-
eters [11] by suitably modifying the loss function, usually
through the introduction of an additive term R(w); i.e.,

Eloss = E(w; I,O) +R(w). (10)
It is here proposed that a regularization term can be

defined as

R(w;B,Bw) = λ

N∏
i=1

Ki∏
k=−Ki

σi · (w·Mweight − k·mi)
2, (11)

where are λ, σi are chosen hyperparameters and

Ki =

⌊ 1
2Mweight

mi

⌋
. (12)

The weights w are assumed to lie in the interval (−0.5, 0.5).
The values of σis are chosen such that the consecutive
multiplications of (11) derive products that neither decay
nor explode. During training, the regularization term (11)
drives a weight w, expressed in floating-point format, to
assume a value which when converted to an integer ŵ, is an
integral multiple of mi; therefore, the corresponding residue
ŵi is zero, i.e.,

ŵi = Q(wMweight) mod mi = 0, (13)
where Q(x) rounds its argument to the nearest integer. In
this way, the proposed regularization term increases residue
sparsity.

For the case of a network with Nw weights, the regu-
larization term (11) can be extended as

R(w;B,Bw) = λ

Nw∑
n=1

N∏
i=1

Ki∏
k=−Ki

σi·(wn·Mweight−k·mi)
2, (14)

The proposed method can be used to optimize the param-
eters of a neural network, specifically for RNS processing,
by increasing residue sparsity. Furthermore it can be applied
to pre-trained networks as a post-processing procedure to
modify already available model parameters.
3.1. An illustrative example

As an illustrative example of the application of the
proposed method, assume that

B = {5, 7, 31, 32, 33} (15)
M = 5 · 7 · 31 · 32 · 33 (16)

Bweight = {7, 32} (17)
Mweight = 7 · 32 = 224. (18)

Furthermore, as a test case, assume a CNN composed of
three 2D-convolutional (Conv2D) layers followed by two
Dense layers, trained for the CIFAR-10 benchmark. Table 1
details the structure of the test CNN. The obtained results
are shown in Fig. 1, which reveals that the proposed method
increases the number of integer weights which are a multiple
of 7, by a factor of 6.35×. These weights have a residue
mod 7 equal to zero. Similarly, the number of integer
weights which are a multiple of 32, increases by a factor of
5.31×. A second choice for Bweight, i.e., Bweight = {7, 33},
is also quantitatively evaluated in Fig. 2. It is shown that
the multiples of 7 increase by a factor of 6.63×, while the
multiples of 33 increase by a factor of 4.45×. Furthermore,
to evaluate the impact of the proposed method on bases
featuring smaller moduli, we replace 33 with 3 and 11 in B
of (15), resulting in Bweight = {3, 7, 11}, without affecting
the dynamic range. The results are shown in Fig. 3. It can
be seen that the number of weights which are not multiples
of any of the moduli in Bweight, is practically nullified.

The accuracy of the employed CNN on the CIFAR-
10 test set is 72%. Marginal loss (0.2%) was observed in
all of the executed tests, attributed to the application of
the proposed regularization schemes that increase residue
sparsity.

Furthermore, VGG-16 [12] is employed on the Ima-
geNet dataset, in order to assess the proposed regulariza-
tion methodology with a state-of-the-art model. Because of
the relatively high complexity of VGG-16, regularization



TABLE 1. CNN ARCHITECTURE

Layer Kernel Dimensions

Convolutional 2D 3× 3× 3× 32
Max Pooling (2× 2) –

Convolutional 2D 3× 3× 32× 64
Max Pooling (2× 2) –

Convolutional 2D 3× 3× 64× 64
Fully Connected 1024× 64
Fully Connected 64× 10
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Figure 1. Histogram of ⌊w ·Mweight⌋ before (blue) and after (red) regular-
ization. Base Bweight = {7, 32} is assumed. Following regularization, the
number of weights that are not multiples of either 7 or 32 is substantially
reduced (other).

via (14) is only applied to the last Fully-Connected (FC)
layer, which is parameterized by a 4096 × 1000 weight
matrix. The results are shown in Figs. 4 and 5 for Bweight =
{7, 33} and Bweight = {3, 7, 11}, respectively. The bar plots
show qualitatively similar results with Figs. 2 and 3 that re-
fer to the CIFAR-10 CNN. Similarly, the accuracy of VGG-
16 remains intact following the utilization of the proposed
regularization method. However, applying the technique to
the entire model may lead to accuracy degradation.

In general, careful tuning of the parameters λ,
σi of (14) is required. In our experiments, we used
λ ∈

{
10−2, 10−1, 1

}
and σi ∈

[
10−4, 10−3

]
de-

pending on the employed RNS base. The values delivered
by (14) for all the weights of the network and all the
desirable multiples can get extremely small or huge, i.e.,
they require substantial dynamic range for their expression.
During the training phase of the model in this experiment,
the computation of (14) utilizes double-precision floating-
point representation. Subsequently, the regularization term
is converted into single-precision floating-point representa-
tion and incorporated into the loss function. During model
evaluation, calculating the regularization term is unnecessary
as only the accuracy metric is considered for assessment.
3.2. Computational complexity

As discussed in Section 3.1, the regularization term (14)
can assume extremely large values, especially when i and
k take many values, i.e., for a large number N of moduli
of interest, and for large Ki. The double product of (14) is
composed of P terms,

P =

N∑
i=1

(2Ki + 1). (19)

For example, for Bweight = {7, 32}, N = 2, and Mweight =
7 · 32 = 224. From (12), it follows that K1 = 16, K2 = 3,
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Figure 2. Histogram of ⌊w ·Mweight⌋ before (blue) and after (red) regular-
ization. Base Bweight = {7, 33} is assumed. Following regularization, the
number of weights that are not multiples of either 7 or 33 is substantially
reduced (other).
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Figure 3. Histogram of ⌊w ·Mweight⌋ before (blue) and after (red) regu-
larization. Base Bweight = {3, 7, 11} is assumed. Following regularization,
very few weights remain that are not multiples of any of the elements of
Bweight (other).

leading to P = (2 · 16 + 1) + (2 · 3 + 1) = 40 terms per
weight.

As the difference (wn · Mweight − k · mi)
2 may grow

large for some terms, the overall regularization loss takes
very large values because, even if wn ·Mweight may be close
to a k ·mi value, the difference will not be exactly zero to
nullify the loss.

To mitigate this issue, only k ·mi values close to wn ·
Mweight are taken into consideration. This essentially applies
a window such that a subset of k ∈ [−Ki,Ki] is selected.
The size of the window can be tuned. In our experiments
the window is selected such that

|wn ·Mweight − k ·mi| < T, (20)
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Figure 4. Histogram of ⌊w ·Mweight⌋ before (blue) and after (red) regu-
larization, for the last FC layer of VGG16 on ImageNet. Base Bweight =
{7, 33} is assumed. Following regularization, the number of weights that
are not multiples of either 7 or 33 is substantially reduced (other).
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Figure 5. Histogram of ⌊w ·Mweight⌋ before (blue) and after (red) regu-
larization, for the last FC layer of VGG16 on ImageNet. Base Bweight =
{3, 7, 11} is assumed. Following regularization, very few weights remain
that are not multiples of any of the elements of Bweight (other).

TABLE 2. TRAINING SLOWDOWN

Bweight Slowdown

Without regularization 1×
{7, 32} 9×
{7, 33} 8.4×

{7, 9, 17} 15.8×
{5, 7, 17} 18.6×

where T is a selected threshold. In our simulations
T ∈ {6, 7, 8} was used.

Table 2 shows the measured average slowdown of the
training step for various scenarios with respect to the non-
regularized training. All the simulations were carried out on
an NVIDIA RTX A6000 Graphics Processing Unit [13].

4. Hardware architectures exploiting residue
sparsity

The proposed regularization-based methodology can be ex-
ploited in a number of ways in RNS-based hardware accel-
erators, as detailed in the following. Various techniques and
architectures exploiting residue-level sparsity are analyzed
in terms of power dissipation.

4.1. RNS base selection
For this analysis, three RNS bases, B, B′ and B′′ are

considered, consisting of five or six channels, for perform-
ing the convolution computations. A two- or three-channel
subset of these bases, to which the proposed regularization
method is applied, is assumed for the storage of weights.
The resulting residue sparsity factors (ratio of zero residue
values to the total number of weights) for the i-th residue
channel are denoted as αi.

The RNS bases B and B′, are restricted to moduli of the
form 2k and 2k ± 1 in order to simplify the implementation
of the RNS arithmetic circuits, while B′′ also includes a
modulo-11 channel. Modulo 2k addition and multiplica-
tion are trivial, as the mod operator simply translates into
performing all operations on the k least-significant bits
(LSBs) only; thus simplified conventional multiplier and
adder design practices apply. For modulo-(2k−1) arithmetic,
the end-around-carry technique can be used. Similarly, for
channels of moduli of the form 2k+1, diminished-1 addition
can be used [14] [15], where all operands are decreased by
one (zero values are handled separately) and an inverted end-
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Figure 6. A modulo-11 MAC unit, which performs the operation y =
(ab+ x) mod 11, where y, a, b, x are residues mod-11 and ai, bi, xi, yi
are bits of weight 2i. White and gray boxes denote 1-bit full adders and
1-bit half adders, respectively. Trapeziums are 1-bit multiplexers. Block
labeled ‘Logic’ is defined by the truth table in the figure. Logic synthesis
further simplifies the unit.

around-carry logic is utilized. The implementation of the
modulo-11 MAC generalizes techniques discussed in [16]
for multiplication, and it is shown in Fig. 6.

Table 3 presents the area complexity and power dissipa-
tion of the MACs required for the moduli composing base B,
referring to synthesis results with a 0.5 V supply and a
clock frequency of 1 GHz, using a 22-nm GlobalFoundries
standard-cell library and Synopsys tools. For each modulo,
absolute area and power dissipation are reported, as well as
the percentage of the total five-modulo MAC area and power
dissipation, which corresponds to the specific modulo. All
modulo MAC designs are pipelined with one intermediate
level of flip-flops (FFs) to support the desired clock fre-
quency (1 GHz).

A second base is considered for comparative evaluation,
defined as B′ = {5, 7, 9, 16, 17, 31}. Base B′ comprises six
moduli the maximum of which is 31. The complexities
of the MACs for each of the moduli in B′, are shown
in Table 4. Two alternative choices are considered for the
subsets of the base that offer sufficient dynamic range for
the representation of the weights, namely,

B(1)
weight = {7, 9, 17} (21)

B(2)
weight = {5, 7, 17}. (22)



TABLE 3. MAC CHANNEL COMPLEXITY FOR BASE B

MAC Area Power

(µm2) (%)1 (µW) (%)1

modulo-5 14 4.6 5 4.1
modulo-7 28 9.3 14 11.6
modulo-31 70 23.3 37 30.6
modulo-32 33 11 16 13.2
modulo-33 156 51.8 49 40.4
1Percentage of the total five-moduli MAC area
(power), which corresponds to each modulo.

TABLE 4. MAC CHANNEL COMPLEXITY FOR BASE B′

MAC Area Power

(µm2) (%)1 (µW) (%)1

modulo-5 14 5.1 5 4.2
modulo-7 28 10.3 14 11.7
modulo-9 50 18.5 22 18.3
modulo-16 24 8.8 11 9.2
modulo-17 84 31.1 31 25.8
modulo-31 70 25.9 37 30.8
1Percentage of the total six-moduli MAC area
(power), which corresponds to each modulo.

We investigate whether the use of smaller moduli is ben-
eficial in terms of increased sparsity, since the number of
their integral multiples in the available dynamic range is
larger, therefore more potential choices are available the
regularization process, also taking into account that the
MAC complexity for smaller moduli is less.

Figs. 7 and 8 depict the number of multiples of the
elements of B(1)

weight and B(2)
weight, before and following the

application of the proposed regularization method. It can be
observed that the method substantially reduces the number
of weights that are not multiples of any of the moduli of
the base (column Other) in both cases. When focusing on
regularizing for multiples of a specific modulo (i.e., 17 in
Figs. 7 and 8), it can be observed that the number of the
multiples of the specific modulo increases. This can be of
interest when a specific modulo imposes relatively high cost
in terms of power dissipation and/or latency. Furthermore,
it can be seen that when regularizing for multiples of all
moduli, a lower number of moduli that are not multiples of
any moduli, is achieved for the base {5, 7, 17}, compared
to {7, 9, 17}.

TABLE 5. MAC CHANNEL COMPLEXITY FOR BASE B′′

MAC Area Power

(µm2) (%)1 (µW) (%)1

modulo-3 10 4 4 3.8
modulo-5 14 5.6 5 4.7
modulo-7 28 11.3 14 13.3
modulo-11 93 37.5 29 27.7
modulo-31 70 28.2 37 35.2
modulo-32 33 13.3 16 15.2
1Percentage of the total six-moduli MAC area
(power), which corresponds to each modulo.
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Figure 7. Histogram of ⌊w ·Mweight⌋ without regularization (blue), with
regularization on all multiples of {7, 9, 17} (red) and regularization on
multiples of 17 only (green).
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Figure 8. Histogram of ⌊w ·Mweight⌋ without regularization (blue), with
regularization on all multiples of {5, 7, 17} (red) and regularization only
on multiples of 17 (green).

4.2. Exploiting residue sparsity to reduce memory
cost

Sparse DNN architectures typically rely on storing val-
ues (weights, biases and/or inputs) in some compressed
vector representation, such as compressed sparse column
or row (CSC or CSR) [17], [18]. These methods use a
non-zero value vector and an index vector, to encode the
coordinates of the non-zero elements. However, index-based
compression schemes are not suitable for encoding sparse
residue vectors. This is because the non-zero values do not
occur at the same positions among the different residue
channels, hence each channel must have its own index
vector. This fact, combined with the small size of the residue
channels (3 to 6 bits) makes the index storage overhead
significant and effectively no compression can be achieved.



To mitigate this problem, a simple variable-length encoding
is proposed in the following.

In the proposed scheme, a zero value is encoded using
one bit and a non-zero value is encoded as a (n + 1)-bit
word, where n is the channel word length. Assuming a
residue value d = dn−1dn . . . d0, the proposed encoding G
is defined as follows

G(d) =

{
0, if d = 0

1dn−1dn . . . d0, otherwise.
(23)

The compression achieved by this method depends on
the sparsity factors αi. The average size, n̂, of the encoded
word assuming base B and using residue channels modulo-7
and modulo-33, is given by
n̂ = α0 + (3 + 1)(1− α0) + α1 + (5 + 1)(1− α0) (24)
= 10− 3α0 − 5α1. (25)

Using the sparsity factors obtained from the test-case of
section 3.1, α0 = 0.8 and α1 = 0.14, the average size of
the encoded word is n̂ = 6.9 bits, translating to a 13.75%
compression rate.

4.3. Exploiting residue sparsity to reduce power
consumption

4.3.1. Clock-gating for smaller moduli channels. The
simplest technique to exploit residue sparsity in order reduce
power consumption is to freeze the sparse residue channels
by clock gating. This means that the clock signal of arith-
metic circuits and input registers of the sparse channels is
masked with an enable bit, indicating a zero-value. This
technique reduces dynamic power dissipation and results in
an overall decrease of RNS MAC unit power consumption
which depends on the sparsity factors and the contribution
of the sparse channels to the total power consumption.
4.3.2. Zero-skipping per moduli channel. Zero-skipping
techniques are common among sparse DNN accelerators.
Instead of simply gating zero inputs (weights or activations),
zero-skipping methods completely avoid loading any zero
values in the processing elements (PEs). This means that
instead of deactivating the PEs to save computation power,
in case of zero values, thus wasting idle clock cycles,
zero-skipping performs the next computation involving non-
zero values. This results both in reduction of total energy
consumption but also processing time. In a residue-level
sparse DNN scenario, zero-skipping must be performed in
the residue level. The workloads of the different residue
channels become unbalanced, since the regularization results
in different sparsity levels. This means that each channel
may complete its computation at potentially different times,
with channels with higher sparsity finishing first. One way
to exploit this, is to completely deactivate (power gating)
a residue channel when it completes the processing of its
current input vectors.

Using the sparsity factors obtained from the test-case
CNN of section 3.1, and the relative energy cost of each
PE, as reported in Tables 3–5, the expected power savings
of such a scheme are estimated in the following. Different
test cases referring to various selections for Bweight and B
are used to evaluate the proposed method’s gains:

TABLE 6. RNS BASE COMPARISON

Base B B′ B′′

Power before regularization (µW) 121 120 105
Power after regularization (µW) 102.8 101.9 92.7

Savings (%) 15 15.1 11.7

1) Test case 1: Bweight = {7, 33}
In this case B = {5, 7, 31, 32, 33} is used as the full
RNS base for accumulation. Since the modulo-7
and modulo-33 MAC units contribute to 11.7% and
40.4% of the total power consumption of a single
MAC, the energy savings G resulting for sparsity
factors αi can be calculated as

G = 0.117α0 + 0.42α1. (26)
Setting α0=0.8 and α1=0.14, the total power sav-
ings, assuming completely deactivating the arith-
metic units of a residue channel when it finishes
its computation, can reach up to 15.01%.

2) Test case 2: Bweight = {7, 9, 17}
In this case, where B′ = {5, 7, 9, 16, 17, 31}, is
used as the full RNS base for the accumulation,
the total gains are

G = 0.117α0 + 0.183α1 + 0.258α2. (27)
Replacing the resulting sparsity factors, α0 = 0.45,
α1 = 0.31 and α2 = 0.16 (Fig. 7, regularization
for all multiples of elements in {7, 9, 17}), G can
reach up to 15.1% for this base selection.

3) Test case 3: Bweight = {5, 7, 17}
Using this base the total gains are

G = 0.041α0 + 0.117α1 + 0.258α2. (28)
By replacing the sparsity factors, α0 = 0.23,
α1 = 0.31 and α2 = 0.35 (Fig. 8, regularization
for multiples of 17 only), G can reach up to 13.8%.

4) Test case 4: Bweight = {3, 7, 11}
Finally, by replacing modulo-33 channel with one
modulo-11 and one modulo-3 channel, according
to the power contribution of each channel we have:

G = 0.038α0 + 0.133α1 + 0.276α2. (29)

Using the resulting sparsity factors a0 = 0.75, a1 =
0.23 and a2 = 0.21 (Fig. 3), G is evaluated as
G = 11.7%

It can be seen that it is generally preferable to select
the channels that have the highest hardware complexity, i.e.,
channels of the form 2k+1, as the target of the regularization
process, since their corresponding energy savings can be
higher. Selecting B′ with target channels Bweight = {7, 9, 17}
for regularization results in the most significant saving per-
centage. However, in absolute values, B′′ performs better in
terms of power consumption, as shown in Table 6.

4.4. Overall architecture implementation details
The weight compression mechanism and the zero-

skipping scheme presented in subsections 4.2 and 4.3.2,
respectively, introduce challenges in the implementation of
a complete CNN architecture. In this subsection, a general
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Figure 9. Overview of an RNS accelerator exploiting residue-level sparsity.
It consists of n independent PE arrays of size M × M , corresponding
to the n different residue channels. A non-zero detector module reads a
window of weight values (stored in a weight buffer) encoded with respect
to Bweight and provides the next non-zero weight. The index of the next
non-zero weight is used to select the corresponding input feature-map. Base
extension units are used to obtain the rest of the channels required for the
convolution.

architecture is proposed, which aims to minimize the hard-
ware overhead required to address these challenges.

A general architecture is shown in Fig. 9. It consists
of N independent processing arrays, corresponding to the
N different residue channels, and two hierarchical memory
components: a weight memory and a feature-map memory.
A weight decoder module reads a window of weight values,
fetched from the weight memory and encoded with respect
to Bweight and provides the next non-zero weight value and
index. The index of the next non-zero weight is used to
select the corresponding input feature-map. Base extension
units are used to obtain the rest of the channels required for
the convolution. By exploiting temporal reuse of weights,
which is possible due to the weight sharing scheme in
CNNs, the decoder can be shared among a large number of
MAC units thus amortizing its overhead. This is quantified
in the following subsection.

4.4.1. Weight decoder. The weight decoder performs the
decompression of the weight values, according to the
proposed variable-length compression scheme of subsec-
tion 4.2. For each channel in Bweight the weight decoder
consists of a weight bit buffer, implemented with a pro-
grammable barrel shifter and a leading-one detector. The
encoded weights are read from the corresponding weight
memory bank and stored to the weight-bit buffer. The
leading-one detector calculates the index of the next ‘1’,
corresponding to the next non-zero weight value, which
determines the number of shift positions of the buffer. The
maximum shift amount is limited to 4–8 positions depending
on the channels (small channels such as modulo-7 have
large sparsity, thus longer continuous strings of zeros are
more probable than in larger channels such as modulo-33).

TABLE 7. MAC AND DECODER COMPLEXITY

Unit Area (µm2) Power (µW)

Decoder Bweight 85 45
MAC B 301 121

Decoder B′
weight 122 64

MAC B′ 270 120

This index is also used to calculate the next address of the
corresponding feature-map bank.

The weight decoder complexity is shown in Fig. 7. The
decoder for Bweight (B′

weight) consumes 37% (53%) of the
power of a single MAC unit, with 28% (45%) of its area.
The larger cost of B′

weight compared to Bweight is because
it consists of three channels instead of two. In both cases,
however, the decoder only adds a small overhead to the total
power consumption of the system, since it is amortized over
a large number of MAC PEs. Assuming a 4× 4 processing
array the total decoder power consumption overhead is 2.3%
and 3.3% for Bweight and B′

weight, respectively, since one
decoder is shared among 16 MAC processing elements.
4.4.2. Memory organization. The different sparsity lev-
els within the residue channels translate into different
processing rates for each channel. This means that each
channel requires a weight residue value from a different
index of the weight vector at each timestep. Let w =
(wt

0, w
t
1, . . . , w

t
N−1) be the tuple of weights required by

the processing elements at timestep t, where N is the size
of B (the extended base used for the convolution), then
wt

k = W [Ik(t)] mod mk, where W is the weight vector,
Ik(t) denotes the index of the weight required by the k-th
channel (0 ≤ k < N ) at time t and mk is the channel
modulus. The values wt

k are provided by the weight de-
coder of subsection 4.4.1. Assuming that weights are stored
in Bweight, which consists of Nw channels, and then Nbe

channels are added to obtain the weight representation in B
(N = Nw+Nbe), then, due to the zero-skipping processing,
the indices Ik(t) are different for all the first Nw channels,
while Ik(t) = t for k ≥ Nw, since no considerable sparsity
is assumed for the channels obtained after base extension
and thus no zero-skipping takes place for these channels.
Regularization can target these channels as well, but this
case is not considered here. Hence, we need to decouple
the access to the weights of each residue channel. This can
be accomplished by using separate memory banks for each
channel. Moreover, at each timestep t, two weights from
each channel are needed: one with an index of Ik(t) ≥ t
and one with an index t required for the base extension. This
can be achieved by utilizing dual-port RAM macros, which
allow simultaneous access to two independent addresses.
Port A, denoted as fast port, provides access to the weight
vector according to the processing rate of each individual
channel, while Port B, denoted as slow port, provides access
to the weight vector at a rate of one value per cycle. The
addresses of the fast ports are incremented at every cycle,
unless the weight bit buffers are full, while the addresses
of the slow ports (corresponding to weight values needed
for base extension), are incremented only when a weight



word fetched from these ports is fully processed (both zeros
and non-zero values are used for the base extension). This
memory organization is thus compatible with the proposed
compression and zero-skipping schemes, without requiring
additional buffers or complex synchronization circuitry. Al-
ternatively, the above functionality could be achieved using
single-port RAM macros and a FIFO buffer for each weight
channel, where the values read from the main weight mem-
ory, are temporarily stored, before being read by the base
extension unit. For every zero value, the number of elements
in the buffer would increase by one, since the difference
between the required channel indices and base extension
indices (Ik(t) − t) will increase by one. The relative area
and power efficiency of the proposed solutions depends on
the actual memory sizes, the maximum number of zeros
during a complete iteration of the a weight vector W , the
complexity overhead of a dual-port RAM, as well as the
target hardware platform. For example, dual-port RAMs
are readily available in most FPGAs. In both cases, the
memory overhead (either a second port or a FIFO buffer)
can be compensated by the reduced memory requirements
and corresponding data movements due to the achieved
compression (Section 4.2).

5. Conclusion
A regularization formulation is introduced in this paper,
which modifies ANN training in order to induce to the
weights the desirable property of increased residue-level
sparsity. When expressed in an RNS, the obtained weights
exhibit an increased percentage of residues that are zero.
The introduced method increases residue sparsity by a factor
of 4× to 6× in certain cases without practical degradation
of ANN accuracy. By comparatively evaluating RNS bases
in the context of the proposed method, it follows that the
choice of the RNS base is important for the exploitation of
residue sparsity.

Building on the residue-level sparsity, it is subsequently
shown that the particular property can be exploited to fur-
ther improve RNS-based hardware accelerators, especially
decreasing energy requirements. The proposed method has
shown promising results for the final fully-connected layer
of the VGG16 model. The application of the introduced
regularization technique may lead to new RNS architectures
that exploit residue sparsity and may render the RNS an
interesting candidate for hardware accelerators in edge de-
vices.
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